Free Images: "bestof:Permutation matrix; row * P^T.svg Permutation of vectors by multiplication with permutation matrices These files belong together <br> File Permutation matrix; P"
Permutation matrix; row * P^T.svg
Permutation matrix; row * P.svg
Permutation matrix; P * column.svg
Permutation matrix; P^T * column.svg
Symmetric group 4; permutation list with matrices.svg
Binary Walsh matrix 16; sequency.svg
Symmetric group 3; Cayley table; matrices.svg
Walsh permutation 1 3 5 15.svg
Natural and sequency ordered Walsh 16.svg
Symmetric group 4; permutation list.svg
Symmetric group 4; permutation list (0-based).svg
Binary Walsh matrix 8; sequency.svg
Gray code * bit reversal 16.svg
Walsh permutation wp( 2, 1, 8, 4).svg
Walsh permutation wp( 1, 2, 4, 8).svg
Walsh permutation wp( 8, 4, 2, 1).svg
Walsh permutation 1 3 5 15 17 51 85 255.svg
Powers of 4-bit Gray code permutation.svg
Symmetric group 4; Cayley graph 1,5,21 (adjacency matrix).svg
Gray code permutation matrix 16.svg
Walsh permutation 15 1 3 5.svg
Walsh permutation 1 2 7.svg
4x4 permutation matrices in partition colors.svg
Higman-Sims-01.svg
Walsh permutation 1 2 7 8 25 42 127.svg
Walsh permutation wp(8,12,2,3) * wp(6,9,1,2).svg
Walsh permutation wp(8,12,2,3) * wp(6,9,1,2) small.svg
No Walsh permutation 1 2 3 4.svg
3-el perm matrix 1.svg
3-el perm matrix 2.svg
3-el perm matrix 3.svg
3-el perm matrix 4.svg
3-el perm matrix 5.svg
3-el perm matrix 0.svg
CV of roots of Gray * bit reversal.svg
Symmetric group 4; Cayley graph 4,9; matrices.svg
Symmetric group 4; Cayley graph 1,5,21 (Nauru Petersen); matrices.svg
Symmetric group 4; Cayley graph 1,5,21 (Nauru torus); matrices.svg
Example permutation matrix; circular shift, left.svg
Example permutation matrix; circular shift, right.svg
Binary Walsh matrix 256 sequency.svg
Symmetric group 3; Cayley table; positions.svg
Symmetric group 3; cycle graph.svg
Weak orderings 2.svg
Weak orderings 3.svg
Walsh permutation wp(15, 5,11,13).svg
Walsh permutation wp( 4, 8, 5,10).svg
Walsh permutation wp( 2, 3,12, 4).svg
Walsh permutation wp( 1, 2, 8,12).svg
Walsh permutation wp( 3, 9,12, 4).svg
Walsh permutation wp( 7,11, 3, 1).svg
Walsh permutation wp( 9,13, 1, 2).svg
Walsh permutation wp( 1,14, 4, 8).svg
Walsh permutation wp(12, 1,10,15).svg
Walsh permutation wp( 8,12,10,15).svg
No Walsh permutation 1 2 3 4 small.svg
Symmetric group 4; Cayley graph 4,9.svg
Compression matrices of Walsh permutations with bendedly striped inversion sets.svg
Compression matrices of Walsh permutations with striped inversion sets.svg
Nimber multiplication 16; inversion sets.svg
Fanoperm274.svg
Symmetric group 4; weak order of permutations; join table; inversions.svg
Sam-Taeguk.svg
Sam Taeguk.svg
Kalman filter model 2.svg
Fanosingercycle.svg
Gray code * bit reversal 16 small.svg
Five-interlaced-crescents.svg
Symmetric group 4; Cayley graph 1,5,21 (Nauru torus).svg
Compressed nim-multiplication table; xor.svg
Nim-products of 2-powers; xor.svg
Brunnian-link-12crossings-nonBorromean-quasi-Arabesque.svg
Brunnian-3-not-Borromean.svg
Multigrade operator XOR.svg
Three-triang-18crossings-Brunnian.svg
Permutation indices.svg
Permutation graph.svg
Permutation indices 3d.svg
Permutation indices 3d numerical.svg
Triangle permutation example Grimaldi.svg
Stirling permutation Euler tour.svg
Tree permutation bijection.svg
Inversion set and vector of a permutation.svg
Matrix multiplication row column correspondance.svg
Block matrix multiplication.svg
Inversion set 16.svg
3-el perm invset 1.svg
3-el perm invset 3.svg
3-el perm invset 4.svg
3-el perm invset 5.svg
3-el perm invset 0.svg
Inversion set 16; wp( 1, 2, 8, 4).svg
Inversion set 16; wp( 1, 4, 2, 8).svg
Inversion set 16; wp( 1, 4, 8, 2).svg
Inversion set 16; wp( 1, 8, 2, 4).svg
Inversion set 16; wp( 1, 8, 4, 2).svg
Inversion set 16; wp( 2, 1, 4, 8).svg
Inversion set 16; wp( 2, 1, 8, 4).svg
Inversion set 16; wp( 2, 4, 1, 8).svg
Inversion set 16; wp( 2, 4, 8, 1).svg
Terms of Use   Search of the Day